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Abstract. Exact reflection and transmission coefficients for supersymmetric shape-invariant
potentials barriers are calculated by an analytical continuation of the asymptotic wavefunctions
obtained via the introduction of new generalized ladder operators. The general form of the
wavefunction is obtained by the use of thé—oo, +oo)-matrix formalism of Foman and Ffman

which is related to the evolution of asymptotic wavefunction coefficients.

1. Introduction

Quantum tunnelling through a potential barrier governs many interesting phenomenain physics
ranging from fusion reactions in stars [1] to the study of transitions from metastable states
[2]. There are very few exactly solvable examples of barrier penetration. Supersymmetric
quantum mechanics has been shown to be a useful technique to explore exactly solvable
problems in quantum mechanics (for a recent review see [3]). An integrability condition
called shape invariance was introduced by Gendenshtein [4] and was cast into an algebraic
form by Balantekin [5]. Reflection and transmission coefficients for a large class of shape-
invariant potentials were given by Cooparal [6]. A general operator method for calculating
scattering amplitudes for supersymmetric shape-invariant potentials was introduced by Khare
and Sukhatme [7]. Even though an approximate method in the context of the supersymmetric
semiclassical approximation [8] to calculate tunnelling through one-dimensional potential
barriers was presented in [9], exact tunnelling probabilities for shape-invariant barriers were
not derived explicitly. We cover the latter subject in this paper.

Introducing the superpotential function

o [W(x)
W)= ——— | -0 11
=" [%(x)] (1-1)
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wherewy(x) is the ground-state wavefunction of the Hamiltonianand defining the operators

A=w+ \/lﬁﬁ (1.2)

At =w@) - \/;Z_mﬁ (1.3)
we can show that

H— Eg= ATA. (1.4)
Since the ground-state wavefunction satisfies the condition

AWy(x) =0 (1.5)
the supersymmetric partner potentials

H=ATA Hy = AAT (1.6)

have the same energy spectra except for the ground stafe which has no corresponding
state in the spectra df,. The corresponding potentials are given by

W = Vo - = w7

Va(x) = [W(0)]? + J%(L—ZV (1.8)
The shape-invariance condition [4]

Va(x, a1) = Vi(x, a2) + R(a1) (1.9)
can also be written as [5]

A(a1) A" (a1) = AM(az)A(az) + R(a1) (1.10)

wherea; » are a set of parameters that specify space-independent properties of the potentials
(such as strength, range and diffuseness). The paraméterfunction ofi; and the remainder

R(a;) is independent of andp. Not all exactly solvable potentials are shape invariant [10].

In the cases studied so far the parameter@nda, are either related by a translation [10, 11]

or a scaling [12]. Introducing the similarity transformation that replagesith a, in a given
operator

T (a1) O(ay) T'(a1) = O(az) (1.11)
and the operators

B = AT(a))T (a1) (1.12)

B_ = Bl = TT(a)A(a1) (1.13)
the Hamiltonian takes the form

H— Eo= B:B_. (1.14)
Using equation (1.10) one can easily prove the commutation relation

[B_, B.] = T"(a1)R(a) T (a1) = R(ao) (1.15)
where we have used an equality which follows from equation (1.11):

R(a,) = T(ay) R(ay—1) T'(ay) (1.16)

valid for anyn. Equation (1.15) suggests thAt and B_ are the appropriate creation and
annihilation operators provided that their non-commutativity viith,) is taken into account.

In this paper we extend the use®f andB_ operators for calculating the asymptotic behaviour

of the wavefunctions related to incidence of a particle on a supersymmetric shape-invariant
potential barrier and obtain the exact transmission and reflection coefficients.
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2. Exact wavefunctions

For the tunnelling problem we consider Sgtlinger equations of the form
R? d?w
2m dx?

wherec is, in general, a complex constant to be determined by inserting the appropriate

superpotential into equation (1.7). The constaint the continuum problem plays the role of

the ground-state energy in the bound-state problem (cf equation (1.4)).

The wavefunctions for all currently known supersymmetric shape-invariant potential
barriers can be calculated analytically using supersymmetric operator techniques [13, 14].

The final result can be expressed by single operaiorand B! [15] or by pairs of these
operators. In the first case we can use the two additional commutation relations

~VIOW () = (E — )W () (2.1)

[B:B_.B}1 =) R B! (2.2)
k=1
and
[B+B_,B™"] = R(ax) B™" (2.3)
k=1

obtained by induction using the relations
R(a,) B+ = B+R(a,-1) (2.4)
R(a,)B_ = B_R(an+1) (2.5)

that readily follow from equations (1.11)—(1.13). Considering that the&lthger equation
can be written as

B:B_W(x) = AV (x) (2.6)

then equations (2.2) and (2.3) imply that and B_ can be used as ladder operators to solve
equation (2.6) [5, 16]. To this end we introdug&” (x) as the solution of the equation

A (@) ¥?x) =0= B (a) ¥ x) (2.7)

which implies

O, ap) ~ exp(—@ / de W, a1)>. (2.8)

If the function
f) =) Ra@) (2.9)
k=1

can be analytically continued so that the condition

fw) =A (2.10)

is satisfied for a particular (in general complex) valug:othen equation (2.2) implies that
one possible form for the solution of equation (2.6)3W¥© (x, ;). Similarly, if w2 (x)
satisfies the equation

Bi(a) V@ (x) =0 (2.11)
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which implies that

T(a) VO (x) ~ exp(@ / ) dg W(s,al)) (2.12)

or
V2m [*
=

WO (x, ag) ~ exp(— de W (g, ao)> (2.13)

then equation (2.3) implies that another possible form for the solution of equation (2.6) is
BT 'O (x, a0). At this point we conclude that the components of the wavefunctions,
written in terms of the singles operatoBs and B~%, for supersymmetric shape-invariant
potential barriers can be written down as

W_(x) = pBW Y (x, ay) (2.1%9)
W, (x) = y B0 (x, ag) (2.1%)

whereu is obtained by the relation
"
A=) R(a) (2.15)
k=1

whereg andy are constants and

v (x,a,) = exp(i— / de W e, aﬂ)> (2.16)

With each value ofx we obtain several possible expressions for the componients) and
the general expression for the wavefunction can be obtained with these components or a
combination of them.

It is also possible to express the components of the wavefunctions using pairs of the
operatorsB, and B~1. In this case we can use equations (2.2), (2.3) and the relations (2.4),
(2.5) to show by induction that

2n
[B.B_, (B:B~™1'] =" R(ay) (B+ B (2.17)
and
A~ ~ A A 2” A A
[B+B_, (B7'B+)" = R(ax) (B7'B:)". (2.18)
k=1

Using these last two equations and the same conditions (2.7) and (2.11) we can show that
the components of the wavefunctions, written in terms of pairs of the opet&taad B~*
for supersymmetric shape-invariant potential barriers can be written down as

U_(x) =B (B+B-YH" v x, ar) (2.19%)
W, (x) =y (B=*By)" B2 WO (x, ag) (2.1%)

and wherev is obtained by the relation

2v
A = ZR(ak). (220)
k=1

Note that in a given problem either equations (2.14) or equations (2.19) could be used, but not
both.
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3. Asymptotic wavefunctions

The formal expressions for the components of the wavefunctions can be expressed in explicit
forms if we evaluate them asymptotically. In the case of single-operator expressions we first
note that using equations (1.12) and (1.13), the results (2.14) can be written as

V_(x) = BAs(a)Ar(ar) -+ Ar(a) WO (x, aye1) (3.12)
Wy (x) = yA Y a) A Hap) - - AN aur ) VO (x, apen). (3.1b)

At this point we need to consider the two basic asymptotic behaviours for the superpotential:
(a8 W(x — =£o0,4q,) is constant (i.e. the potential barrier goes to a constant); and (b)
W(x — +oo,a,) — oo (i.e. the potential barrier goes teco). In the former limit

the commutator

8 !
[a_x’ W(x,au)} = W'(x,ay) (3.2)
vanishes. In the latter case this commutator can be ignored as
) W'(x, a,)
w s Up w s +W s Up) = w s Up w s 1+
(x, an) W(x, ax) (x, a) (x, an) W(x ak)< W(x,a,,)W(x,ak)>
- W(-xaan) W(-xvak) (33)

provided that W'(x, a,)/ W (x, a,) remains finite, which is the case for all realistic
superpotentials. Hence in both limits we can write equations (3.1) as

W_(x) = BW1+ Ws)) (Wa + Wyan) -+ (W + W) W0 (x, a,00) (3.40)
Wa(x) =y (W1+ Wisd) T (Wo+ Wisn) ™ (Wisg + Waad) P00 (x, api0). (3.4p)
In these equations the quantily, is the short-hand notation fov (x, a,,)-
If we assume that the superpotential satisfies the condition
Wi(x,a,) = W(x,a1) + (@ —1)¢(x) (3.5)

then these asymptotic equations can be in a form suitable for analytic continuation, that is
I'(2z +2w)
I'(2z+ )

['(2z + )
r2z+2u+1
wherez = W(x, a1)/¢(x). The condition given by equation (3.5) is satisfied for a number
of superpotentials and in the final section we give some examples. If this condition is not
satisfied, the analytic continuation may still be done, but will be more complicated.

When the asymptotic behaviour of the superpotentidit (s, a,) — Fo0o we can use the
identity

Wo(x)=B¢" O (x, aye1) (3.63)

W, (x) =yt vO(x,a,) (3.60)

lim iw = (3.7)
y=Eeo yi Ty + )

to express equations (3.6) in the simple form
W_(x) = B WD) WO (x, au) (3.89)

Wi(x) =y W) 10O (x, a,41). (3.80)
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We can repeat the same procedure used above in the case of a pair of operators. Again,
using equations (1.12) and (1.13) the results (2.19) can be written as

W_(x) =B [ | Araz-1) AMaz) ¥ (x, azs1) (3.99)
k=1

Wi(x) =y l_[ A7 an_1) As(an) A" age1) WO (x, agye1). (3.%)
k=1

Considering the superpotential asymptotic simplifications given by equations (3.2), (3.3) and
the analytic continuation condition (3.5), we can write the result for the components of the
asymptotic wavefunctions in this case as

Fl—z—v)

U (x) = y© " 3.108

(x) 'BF(l—z—Zv)F(v+%) (x, azpe1) ( )
L 1

o) = y 22O D) oy g, (3.10)

rl-—z-v
4. General asymptotic wavefunctions and the transmission and reflection coefficients

Using the formalism developed in [17], we can write two possible asymptotic solutions for the
one-dimensional time-independent Sidinger equation in the form

W1(x — F00) = A11(£00) f1(x) + A21(£00) fa(x) (4.13)

Wo(x — F00) = A12(£00) f1(x) + A22(£00) fa(x) (4.1b)
where

exp(+ix (x)) exp(—ix (x))
= — and = ——"" 4.2

f1(x) NZIES) f2(x) NZIE) 4.2)

with
* 2m

x(x) = / q(§)dé and q(x) = g Wi(x, au+1)- (4.3)

If we define the vectors
|‘1’1(x)>}

v = 4.4

W (o) [WZ o (4.4)
and

(f =[] (f2(0)]] (4.5)
then we can write

(W(x — F00)| = {f(x)|A(£o0) (4.6)
where the asymptotic coefficients matrix is given by

A(o0) = [All(ioo) Alz(ioo)} @.7)

Ap1(F00)  Azy(f£o0)

Considering that the space evolution of the coefficients matrigiven by an iteration process,
can be written as

A(x) = F(x, xo) A(xo) (4.8)
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then if we know the asymptotic coefficientsioo and +oo, we can obtain the evolution matrix

F(—00, +00) = A(—00) A~ (+00). (4.9)
Using equation (4.9) we can show two basic properties ofthraatrix:

det F(—o0, +0) =1 (4.1()

F(—00, +00) = F~1(+00, —00). (4.1)

The knowledge ofF'(—oo, +00) permits the determination of the exact transmission and
reflection barrier coefficients. If we consider a wave incidence frema to +oo then we
can write the asymptotic wavefunction in the form

V(x — —00) = f1(x) + Cg f2(x) (4.11)

Y(x — +o0) = Cr fa(x) (4.11b)
or

V(x - —00) = (f(x)|a(—00)) (4.1%)

V(x = +00) = (f(x)|a(+o0)) (4.1%)
where

1 0

la(—00)) = |:CR:| and la(+o00)) = |:CT:| . (4.13)
Considering that

la(—00)) = F(—00, +00) |a(+00)) (4.14)
we can conclude that

1
T = Fra(—co0, +00) (415
Cr = Foo(—00, +00) (415))

 Fia(—00, +00)

and the transmission and reflection coefficients are givefi by |Cr|> andR = |Cg|%. At
this point if we consider the conservation of probability, the time-reversal invariance and the
invariance under space reflection, it is possible to show the additfomaatrix properties:

F11(—00, +00) = — F3(—00, +00) (4.169)
F21(—00, +00) = —F12(—00, +00) (4.160)
| F12(—00, +00)| = |F1p(+00, —00)| > 1 (4.1€)
| F22(—00, +00)| = [F22(+00, —00)| < |F12(—00, +00)]. (4.16d)

5. Applications

5.1. Parabolic barrier
For a parabolic potential barrier [18]

Vi(x) = Vo — 3mQ%x? (5.1)
the corresponding superpotential, obtained by using equation (1.7), is given by

W(x,a1) = aix (5.2)
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wherea; = +i/m/2 . The shape-invariance condition (1.9) implies that
R(a,) = +2igg (5.3)

wheregg = %EQ. Using equation (2.20) we can conclude that

I3
Z R(ak) = :|:i2pL80 =A=F— Vo + i80 (54)
k=1

or
p=-31=+iixr (5.5)

wherer = (Vo — E)/gg. The asymptotic form for the components of the wavefunction can be
obtained using these results in equations (3.8),

W_(x) = B (i) T2 g2 [—GXW'Q )] (5.69)
N
_ _ P
Wi (x) = y () 2FH2 T2 [—eXp(iIQ )] (5.60)
NG
or
gFik+ DT g (k+pmh Lirj2 [ €XP(Fi0®)
— T I S
V_(x)=8 { eii(k{.%)g e(]ﬁ.%);ﬂ } [ \/5 i| (57)
and
gFik+ T g+ i o2 [expEio?)
— T I S
Yi(x) =y { etk D o= (k+Hmn v [ NG ] (5-8)

wherep = /mQ/2hx andk = 0,1, 2,.... Using these results it is possible to write two
asymptotic solutions of the Saptinger equation when — +oco in the form

- -
Wy (x — +o0) = /4 THA|p[14/2 [EXF’(—'Q ):| § gin/Agh A o) ~it/2 [exp(+|g )}

NG Ve
(5.9)
i A2 P A2
Wy(x — +o0) = e m/Ag=3TH/4|o|/2 |:eXp(—'Q )i| 4 /A dni/A| o in2 |:exp(+lg ):|
Jve Ve
(5.%)
therefore, if we identify
exp(—io? exp(+ip?
Ay = 2RO g e = SREED (5.10)
Ve Ve
we can conclude that the elements of #heroo)-matrix will be
Api(+o0) = &7/*e ™Mo/ (5.11a)
A12(+OO) — 7iﬂ/4ef3nk/4|g|i)»/2 (51:lb)
A21(+OO) — —i7T/4e—7t)\/4|Q|—i}\/2 (5110)

Apa(+o0) = /e 34 g T1H2, (5.11d)
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In the case ok — —oo if we consider that

oHM2 — gF T g FA2 0 12 (5.12)

in equations (5.8), then we can write two asymptotic solutions of thed8atger equation
whenx — —oo in the form

Wy (x — —00) = [(ei3n/4 + ejn/4) g4 e—in/4e—nx/4] |Q|i,\/z [exp(—iQZ)]
NG
. . . . I 2
+[(el37r/4 + /4y @rr/A e'”/4e’”*/4]|gl"’\/2 [exFi(/*'EIQ )i| (5.13)
and
i 2
\Ilz(x - _OO) — [(ei37r/4+ é?‘[/4) e—JT)»/4+ é?‘[/4e—37'[)»/4]|Q|ik/2[exm_lg )]
0
+[(ei3rr/4 + /Ay g/ _ e—in/4e—3ﬂk/4] |Q|—i)\/2|:exif;_ié’2)i| (5.14)
e
therefore we can identify the elements of thé—oc)-matrix as
A]_]_(_OO) — [(ei37t/4 + én/4) e]T)\./A + e—iﬂ/4e—ﬂ}\/4] |Q|i)u/2 (515&)
A]_z(—OO) — [(ei3r[/4 + én/4) efn)h/4 + én/4ef?>n)»/4] |Q|ik/2 (515))
A (—00) = [(ei37r/4 + érf/4) err)u/4 _ eir[/4e—rr)\/4] |Q|—i)»/2 (51&:)
Azz(—oo) — [(ei3ﬂ/4 + é?‘[/4) e_ﬂ)\./4 _ e—iﬂ/4e—3ﬂ)\/4] |Q|—ik/2. (5151)

In the choice of the two asymptotic wavefunctions for—~ +oo we considered the set of
properties given by equations (4.10) and (4.16) thatRhmatrix needs to satisfy. Using the
results forA(—oo0) and A(+o0) in equations (4.9), we can show that the evolution matrix can
be written as

» ieﬂk/Z (1 + ierr)L/Z)'Q'i)L 516
_ + — . .
oot =] e e (5.16)
and the exact transmission and reflection coefficients are given by
1 1
= = 5.17
|Fia(—00, +00)2 1 +e™ (17)
and
Foo(— L+ 2 eﬂk
_ |Faa(z00, +oo)I” , (5.18)
|Fia(—00, +00)|2  1+¢e™
5.2. Morse barrier
For a Morse potential barrier [19]
Vi(x) = Vo (2e/" — /") (5.19)

the corresponding superpotential, obtained by equation (1.7), is given by

W(x, ay) =a;+ae’’ (5.20)
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where

“= *./E(l T (5.21)

o ==xIy/V
with & = h?/(8mb?) ands = /Vp/e. The shape-invariance condition (1.9) implies that

R(a,) = a? —aZ,y (5.22)
wherea,.+1 = a, + 2,/¢. Using equation (2.20) we can conclude that

XH: R(ay) = a3 — aiﬂ =A=E+a’ (5.23)

k=1
or

aue1 = HIVE. (5.24)
If we remember that

a,+1 — da
= ”21_\/51 (5.25)

we can use equations (5.21) and (5.24) to show that

,u:—%:l:i%s:l:i%r (5.26)

wherer = /E/¢.

Considering the asymmetry of the Morse potential barrier, the wavefunction will have a
different behaviour in #o and—oo. Therefore, the asymptotic form of the components of the
wavefunction forx — +oo can be obtained using the last results in equations (3.8),

exp(Fizs expix/b))

vexplx/b)
exp(izs expix/b))

J/exp(x/b) ’

Using these results it is possible to write two asymptotic solutions of thé8ittyer equation
whenx — +oo in the form

W_(x — +o0) = B eTm/4gnEn/4 [ (5.27a)

W, (x — +00) = y eFT/4grloEn/a [ (5.27)

i1
—im/4 gt (s—r) /4 eXp(-HiS eX[.'(x/b)) 5.2&8
e [ JeXRCi /) oo
exp(—ils expix/b))
exp(+i3s exp(x/b))

Wy (x — +00) = dr/4g=m(str)/4 |:eXp(—i%s eXrXX/b)):|

\yz(x - +OO) — e—i7‘[/4e—n(.3‘—r)/4 [

(5.28)

+eirr/4err(s+r)/4 |:

therefore, if we identify
exp(—i3s exp(x/b))
Vv expx/b) (5.29)

exp(+izs expix/b))

J/exp(x/b)

f1(x — +00) =

fo(x — +o0) =
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we can conclude that the elements of #heroo)-matrix will be

A11(+00) = /4 GH /4 (5.30m)
Arp(+o0) = @ 1 T/4gms=n/4 (5.3)
Azi(+o0) = e 1 T/Agrs—n/4 (5.30)
Agp(+o0) = em/4grin/4, (5.30d)

In the case ok — —oo we can substitute far andr and using equation (3.6) find

VITEED i
I (3xidsLidr)
2 2 2

V_(x > —00) =g (5.319)

r (% + i%s + i%r)
Jr T (&ir)

wherek = 2mE /h. Using these results it is possible to write two asymptotic solutions of
the Schodinger equation when — —oo in the form

Yi(x > —00) =y gtk (5.31b)

ei371/4 efnr/Z eln/4 e?'[S/Z
+

Wi(x > —00) = [F } NANOCS

(%+i%s+i%r) I ( +| s—l—

gn/4 gris—r)/2 g3n/4 _
+ ) -t 1 JrD(ir) e (5.32)
F(§—|§S—|§V) F§—Is+lr
and
dn/4 e'3”/4 eﬂ(s+r)/2 )
Wy (x — —00) = ———~ + JrD(=ir) éks
F(§+|§S+|§r) F +| S
ein/4 er[r/2 e|371/4 e7'[s/2 )
* [ T 1. T T } VrT(—ir)ye™ (5.33)
(3 —igs—izr) T(z—igs—igr
therefore, if we identify
exp(+ikx) exp(—ikx)

- —00) = ————= and - —0) = ———~ 5.34
filx ) Jr Sfa(x ) NG (5.34)
we can conclude that the elements of #he-oo)-matrix will be

ei3rr/4 e—rrr/2 elr(/4 e;rs/2
Aq1(—00) = — 5t } VrT(ir) (5.3%)
_F(§+Iis+lir) I (3+ids —iir)
eir[/4 e|371/4 er[(s+r)/2
Aqp(—00) = 11~ T i| r T (=ir) (5.3%)
_F(§+|§s+|§r) F( +is s |2r)
eirr/4 err(s—r)/Z ei371/4
Ap1(—00) = + (i 5.3%
G Iy s vy F(%—i%sﬂ%r)}ﬁ i (5:3%)
eirr/4 errr/2 ei37'[/4 er[s/Z )
Aza(—00) = — T~ t 11— |V T(=in. (5.35d)
_F(§—|§S—|§r) F(§—|ES—|E}’)
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Again, in the choice of the two asymptotic wavefunctionsxor> +oo we have considered
the properties of thé&-matrix. Using the results faA(—oo) and A(+o00) in equations (4.9)
we can show that the evolution matrix can be written as

F(—o00, +o0) = |:|Ii(zg* II:*] (5.36)
where
6=n/4 Jr T (ir
and
(s+r)/4 -
= f‘ﬂ(%Tm (5.38)
In this case the exact transmission and reflection coefficients are given by
1 —7 (/2 sinh (rrr
= [Fra(—oo, +00)2 eCOSh[%nS(s —(;T)]) (5-39)
and
| Foo(—00, +00)[? €7 cosh fr/2(s +r)]
= [Faa(—oo, #o0)?  coshf/2G —r] (540
5.3. Eckart barrier
For an Eckart potential barrier [20]
Vi(x) = Vosech (x/2b) (5.41)
the corresponding superpotential, obtained from equation (1.7), is given by
W (x, a;) = a; tanh(x/2b) (5.42)
where
ar = /e (=1=%is) (5.43)

with ¢ = h?/(32mb?) ands = /Vp/e — 1. The shape-invariance condition (1.9) implies that
R(a,) = as — asﬂ (5.44)

wherea,+1 = a, — 2./¢. Using equation (2.20) we can conclude that

2v

> R@)=d2—a5=A=E+a} (5.45)
k=1

or
azpi1 = HIVE. (5.46)

If we remember that

oy = farim (5.47)

—2.z



Supersymmetric shape-invariant potentials 1515

we can use equations (5.43) and (5.46) to show that
sz—%:lzi%sq:i%r (5.48)
wherer = /E/e.

The asymptotic form of the components of the wavefunction can be obtained using these
results in equations (3.10),

r (% + il—lls + i%r)

(1:t i%r) r (‘—l1 + i%s T i%r)
T (£i3r)T (3 £izs Fizr)
r (% + i%s + i;llr)
wherek = «/2mE /h. Using these results and the relation

V2
Fr(zxiy)rEFiy) = 5.50
(F£)T(GFD) cosh(rry) £ sinh(ry) (5.50)
it is possible to write two asymptotic solutions of the Sitinger equation when — +o0 in
the form

efikx (5.4%)

V_(x) =4 T

Vo(x) =y gtk (5.4%)

Wi (x — +00) = C1e7% + 1k (5.51a)
Wy(x — +o00) = Che 'k — g™ (5.51b)
where
C1 = V27 {cosh[in(r £ 5)] +isinh[ (- + )]} "
s T(@+idr) T G +ils—iln) T G gils—idn)) " (5.52)
and
C2=2x T (i3r) {cosh[in(r £5)] —isinh[ix(r £ )]}
x TEgils+il)T B +ids+iln) ™. (5.53)
Therefore, if we identify in equation (5.51)
filx > +00) = \_/I;C and folx — +00) = ;]; (5.54)
we can conclude that the elements of theroco)-matrix will be
Aj1(+00) = Cy (5.5%)
Agz(+00) = C; (5.5%)
Az1(+00) = Cy (5.5%)
Az(+00) = —Co. (5.55)

Also we can write two asymptotic solutions of the Sidinger equation when — —oo in
the form

Wi (x —» —00) = 1€ — Crex (5.569)
Wy(x — —o0) = —Cae*™ — et (5.560)
and identifying
Hikx —ikx
filx &> —o0) = and fo(x > —00) = (5.57)

Jk
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we can conclude that the elements of #he-oo)-matrix will be

Aq1(—00) = Cy (5.58)
A1p(—00) = =C; (5.5%)
Azi(—00) = —C] (5.5%)
Az2(—00) = —Ca. (5.58)

Using the results for (—oo) and A(+o0) in equation (4.9) we can show that the evolution
matrix can be written as

F(—o00, +00) = [_gh* f;} (5.59)
where
C.1Co — CFC3
g=—2 12 (5.60)
C1Cy + C1C2
and
_ 266 (5.61)
C1Cy + CIC; ' '

On using equations (5.52) and (5.53), after a considerable amount of algebra we can show that
the exact transmission and reflection coefficients are given by

_ 1 _1|c ¢ 2 _ sint? (r/2) (5.62)
|Fia(—00, +00)2 4 |C; (1 sint? (rr/2) + cost (5/2)
and
_ |F(=00,+00)2 _1|C2 € 2 _ cost (s/2) (5.63)
|Fia(—00, +00)|2  4|C5;  C1 sint? (rr/2) + costt (s/2) '
Here we should note that a special form of the Eckart potential
V(x) = —n(n + 1)secl(x/2b) (5.64)

where n is an integer, is reflectionless as the Hamiltonian with this potential is the
supersymmetric partner of a free particle [3]. The well studied Korteweg—de Vries
equation possesses these potentials and other reflectionless multisoliton solutions [21]. It is
straightforward to show that our resultin equation (5.63) indeed vanishesWyhen-n(n+1).

6. Concluding remarks

In conclusion, we note that the present technique is a powerful and an elegant prescription
to obtain exact reflection and transmission coefficients. This method may also be used for
all supersymmetric shape-invariant potential barriers that satisfy the analytic continuation
condition (3.5).

One possible application of the shape-invariance formalism is to multidimensional
quantum tunnelling. In nuclear physics applications multidimensional quantum tunnelling
can be visualized as the tunnelling of a quantum mechanical system (such as a nucleus with
internal excitation) instead of a structureless particle through a one-dimensional barrier. The
nucleus is typically taken to enter the barrier in its ground state and may emerge either in the
ground state or in an excited state on the other side of the barrier. The interaction between the
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penetrating quantum system and the barrier also needs to be specified based on the physical
conditions of the problem. It has been known for some time that, if the excitation energies
are neglected, the penetration probability of drdimensional system can be reduced to a
sum of probabilities ofV one-dimensional suitably defined barriers [22]. The eigenchannel
formulation remains valid even for finite excitation energies as long as the energy dependence
of the weight factors is taken into account [23]. The eigenchannel approach was shown to
be appropriate for the description of fusion reactions of deformed nuclei below the Coulomb
barrier [1]. Our formulation would be applicable in such cases if the eigenpotentials are shape
invariant. A simpler limit would assume factorization of the interaction between the barrier
and the quantum system into a product of two quantities which are functions of the barrier and
internal degrees of freedom, respectively. Such a factorization approach was already applied
to a coupled system of equations for bound states [24].

Ourapproach, ingeneral, could be applied to other continuum problems besides tunnelling.
For example, the Coulomb problem was shown to be shape invariant and consequently
Coulomb scattering can be treated using the methods discussed here in addition to the standard
approach using supersymmetric quantum mechanics [25].

Our formulation also casts the tunnelling problem in an algebraic basis [5, 26]. If the
internal system can be described by an algebraic model such as the interacting boson model
[27] then it may be possible to cast the entire problem into an algebraic framework. A group-
theoretical formulation can be a starting point for systematic approximations such as those
given in [28]. A detailed study of such aspects is deferred to later work.
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